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PLANING OF WATERCRAFT2

By Herbeft Wagnex
SUMMARY

Since form drag due to friction is nonexistent during gliding (or
plening), the frictional drag can be applied as subsequent correction.
The possibility of applying the conventiowal drag lews has already been
partly verified by model test (Sottorf). These frictional forces are
not discussed further.

W Infinitely small inclination of the bottom in a frictionless fluild,
the drag can be separated exactly into wave drag and spray drag: wave
drag contains the total mwotion energy remaining behind the planing surface;
when infinitely thin epray hits the water surface, the energy contained
in it ie dissipated ss turbulence. Further division of the wave drag
at low speeds into a gravity effect (dlsplacement drag) and s dynamic
effect (planing drag) dces not appear possible Torthwith. At high
speeds, or more accurately, for great wave lengths compared to planing
surface dimensions, the motion ernergy (wave energy) remaining behind
the planing surfa Tocomes independent of gravity; hemce it is iden—
tical with the induced drag of the gravity-free motion,

At great (finite) engles of attack an exact division of the drag
into wave drag and sprey drag is not possible.2 The water pushed down-
ward behind the planing surface and the water from the sides meet and
throw up new sprays, and the alr carried deep down below the water sur—
face itself is indicative of the formation of vortex surfaces esnd its
correlated energy dissipation. At low speeds the water flowing laterally
strikes the rear portion of the sides of the planing boat and shoots up i
into the air.

R AT B

1"Uber das Gleiten von Wasserfaﬁriéugen." Jahrbuch der Schiffbau— .
technik, vol. 34, 1933, pp. 205-227. ’

2The decamposition of the ship drag into friction drag, form drag,
and wave drag 1s, after all, only a technical expedient.
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The processes during rapid planing and st small angles of attack
including nonstatinnary motion appear to be theoretically explained
by the airfoil comparison. In some oimple cases of rapid planing
exact information is obtainable by the theory even for {inite inclina-
tion of planing botton.

However, it should be borre in mind that the attituds of slow plan-
ing is technically important also and accurate information regarding it
is still very scarce.

INTRODUCTION

The present report deals with the processes accompanying the plan—
ing of a planing boat or a seeplane on wate¥., Ths study is largely
based upon theoretical investigations: mathecmatical problems and proofs
are not discuessed. To analyze theoretically actual planing processes,
giving due consideration to all sgpects of the problem, is probably
not possible. The theories therefore treat various simple limiting
cases, which in their entirety give a picture of the planing processes
and enable the interpretation of the experimental results. The dis~-
cussion is concerr -3 with the stationary planing attitude: the boat
Planes at a constant speed V on an originally smooth surface.

Limiting Case of Rapid Planing, that is, Gravity Disregaerded

The discussion stérts with the condition of very fast planing of
a small boat. The faster the boat planes the grsater the dynamic forces
(planing forces), and the greater the reduction in the static pressure
of the water (displacement lift)relative to these forces, The order of
magnitude is given by the depth of immersion of the boat (references 1 2nd 2) .
This ultimately leads to disregarding the static pressure; that is, it
leads to the concept that the fluid with the originally flat, free sur—
face is in a space devoid of gravity.

Flat Plate, Two—-Dimensional Prcblem (Reference 2)

The simplest form of the planing bottom is a flat plate with very
great (infinite) width. Figure 1 shows the form of the free surface and
Pressure distribution for different angles of attack B; spray is thrown
forward. The speed of the water in the spray ({or a moving planing sur—
face).is almcst twice as great as the planing speed V.

The planiné force R can be computed; it acts perpendicular to the
plate. Energy is needed to overcome the drag W = R sin B. Behind the
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planing surface the water eventually beocomes perfectly still; hence no
energy remains, The entire energy corvesponding to tie drag W is
disslpated in the svray. Only spray drag, that 1s, drag corresponding
to the spray energy, occurs, and no wave drag. The same holds for
gravity-free motion -for infinltely wide planing surfaces of any profile.

At point €, where the flow divides; the higheet pressure at all
angles of attack is the dynam;c Pressure DPpay = % pve, At emall

engles of attack the préssure in the entire rear portion of the plate
drops linearly with decreasing angle of attack; at infinitely emall
angle of attack it is infinitely small compared to the pressure peak

at the forwvard edge. This emall ares at the forward edge is termed the
epray root. This flow area is, at semall angles of attack, geometric—
ally similar for 411 angles, its meacure is defined by the spray thick—
ness &. Since this thickness, like the drag, decreases proportionally
with the square of the angle of attack, the area of the spray root at
very small angles of attack is extremely small, and almost pointlike.
The region beyond the spruoy root is dssignated as the principal area.

The root area can be computed independently of the rest of the flow,
(reference 2, p. 197). It is illustrated in figure 2.

Plates with Infinitely Small Angle of Attack

Airfoil Comparison (Reference 2, p. 199)

Pigure 3 illuetrates the flow past a flat wing of infinite span.
The thicknese of the wing is very (infinitely) smsll. The flow at the
trailing edge is smooth, as for the planing surface. There is, however,
at high speed an upward flow around the leading edge of the wing (fig. 3,
bottom). Since a high negative pressure corresponds to a high speed,
the leading edge of the wing is pulled forward by the fluid. The force
introduced here *¢ called the "suction force" S, and the flow in the
area of the leading edge the "suction point." The rest of the flow area
ig designated as principal area. In this principal area the pressure is
perpendicular to the flat plate. The positive pressure R on the lower
surface is as great as the negative pressure R on the upper surface.
The resultant 2R of this pressure ig inclined to the rear., The re—
sultant of S and 2R gives the total force T at the wing. Since,
aside from fluld friction, a wing of infinite span experiences no
drag, this resultant is perpendlcular to the flow velocity V.

Now it can be proved that in the lower half of the principal area
of the wing and in the principal area of an identically formed planing
surface (cf. figs. 3 and 4) identical flows prevail, provided the angle
of attack is infinitely small. The lower surface of the planing surface
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then experiences the same force R as the lower surface of the wing.
Suction force does not appear on the planing surface; in its place there
occurs the spray. Therefore the totsl force R on a planing surface is
equal to half the totel force T of the identically formed and identi~-
.cally moving wing, less half the suction force &, or mathematically
expressed: R = Z T—=> (— é s).

This comparison is valid for surfaces of any shape, any boundary,
and any stationary or nonstationary motion, so long as the anglee of
inclination of the surfaces are everywhere very (infinitely) small and
gravity can be disregarded. On the planing surface the suppression of
the suction force of the wing corrssponds to the foundation of the spray
drag Wg = % S. The sprey thickness is therefore defined by the suction
- 5

Lobva®
the planing surface become ldentical toward the border of these areas
and change smoothly intc the principal flow., Figure 5 indicates the
form of the surface for several infinitely wide, circular curved plan—
ing surfaces. Lift, drag (syray drag), and spray thickness are obtained
from simple equations (cf. appendix). An wwwardly curved plate with
zero angle of attack gives a 1if't without exreriencing drag. Down—
wardly curved rl-->g experience eilther an upward or a downward force
depending on the angle of attack. Downward camber lowers the 1ift and
raises the spray drag as compared with the flat plate.

force of the wing: 5 Suction flow of wing and root flow of

Application of Airfoill Comparison to Plate of Finite Span

A brief summary of the resulte of Prandtl's airfoil theory (refer—
ence 3) is indicated., In contra distinction to the wing of infinite
span, for the wing with finite gpan b +the fluid pressed dcwnward by
the wing can escape laterally upward and flow toward the upper surface
(fig. 6). Thig additional downward velocity occurs in front of the wing,
and has a magnitude

27
VY = - 1)
‘ nPVh2 (

in the medlan area of the surfasce and increases to 2vy far behind the
wing. This downwash v; 1is almost constant over the entire wing span.
It is dependent upon the lift T and the plate width, but not on the
shape. Thus, compared to the plate of infinite span the flow experiences
& downward inclination for a downwash angle @ = v; /V and, in addition

b
a curvature.

Congider first the case of the wing that 1s short compared to its
width (7 smaller than about 1/3 b). In this instence for a good



NACA ™ No. 1139 5

approximation the curvature of the flow can be neglected; that is, the
angle of downwash B4 mey be considered consbant'in the gntire range

of the wing. Flow in tlie zone of the wing and forces then correspond

to those of a wing with infinite span at an angle of downwash fi,

making PBw = B — Bi the "effective asngle of atteck” of the wing with
finite span. In consequence (cf. fig. 7), the force is inclined backward
an amount fi; the wing of finite span thus experiences a drag Vj = T4,
called the "induced drag." This drag finds expression in the motion
energy of the downwash remaining behind the wing.

This argument is now applied to the planing surface (cf. figs. 19,
20). The planing surface of finite width b and no excessive length
is subjected to the same 1lift A and the same sprey drag W as an
identically wide piece of an infinitely wide plate of the same profile
but set at an angle 1s less by

B = (2)
n p Ve b2

To this 1s added, an induced drag due to downwash

haZ (3)

which is dependent upon the total 1lift and the width of the plate, but
independent of the plate form, (hence of the pressure distribution over
the plate). Since this drag corresponds to the motion energy in the
water behind the planing surface, it is logically identical with the
wave drag of a planing process under the effect of gravity.

For plates of great length (reference 4) it is necessary to consider,
agide from the.inclination of the flow, ite curvature. The behavior of
the flat plate in curved flow is exactly the same as that of « plate with
downward curvature in & rectilinear flow (fig. 8), so that — with re-
gpect to the theory of the short plate and given angle of attack — the
1ift and hence the induced drag is decrsased, but the spray drag is
increased.

Figure 9 shows the induced drag and the syray drag compared to the
total drag for flet plening surfaces. For very short plates the spray
drag equals .the total drag; it then decreases and reaches the minimum
proportion of about 45 percent at around 1/b = 1.3. For longer plates
its proportion rises sgain and ultimastely reaches 1/2 for very long
plates. It is emphasized that this result holds exactly only for
gravity—-free motion and for very (infinitely) small angles of attack.
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The induced drag is not avoidasble for any given plate width. On the
other hand, the spray drag can-be minimized by appropriate design-shape
(curvature of plate), if this is consistent with the other properties
of the planing boat. |

V-Bottom Planing Surface

A slight V (fig. 10) -affects the lifting force very little accord—
ing to both the theory and the tests. Induced drag and spray drag are
in the seame ratio as for flat plates. Curvature of the planing bottom
in the longitudinal direction lowers the spray drag in the same degree
as for flat plates. (A very simple situation is obtained for the "ex—
treme case of long planing surface,"” reference 2.)

The spray is projected leterally (cf. figs. 21, 82, 23). If the
normal to the forward edge of the pressure surface is plotted in plan
(fig. 12), the angle between the planing direction and the direction of
velocity vpel of the spray water relative to the boat is bisected

(reference 2, p. 2, last paragraph). The magnitude of the relative
velocity is V. The absolute velocity vgp on boats with greater V
and especially small angle of attack B, is very much smaller than the
gpray velocity 2V of boats with zero V-bottom. Since the sprays have
the same energy, however, they are correspondingly thicker on the
V-bottom boat.

The flow processes in the forwaerd ares can be approximately com—
pared with the vertical penetration of a wedge into the fluid surface
at a speed VB. The latter process yields to theoretical solution, as
will be shown elsewhere (cf. fig. 17).

The ensuing pressure distribution is shown in figure 10. Scme
data is afforded by the theory regerding the decrease in planing force
for marked V-bottom, but these uncertain results will not be discussed.

Effect of Friction

On the planing surface the speed increases from the stagnation
point in direction of the flow, that 1g, forward and reasrward, respect—
ively, (fig. 11). In’'such cases, according to Prandtl's boundary layer
theory, the viscosity of the fluld merely causes the appearance of a
frictional force in the direction of the plate, which can be subse-
quently accounted for. Separation phencmena and vortex formstions sim—
ilar to the processes at the upper surface of a wing or at the stern of
a ship, cannot occur cn flat or slightly curved planing surfaces (on
markedly curved plates with emall angle of attack (fig. 5, top, for
example) the speed along the flow can, of course, decrease); such plan—

ing surfaces have no form drag.



"

SR A RS TR T s e =

o e

NACA T™ Ro. 1139 T

When considering the frictional force the friction of the spray
thrown forward at the bottom must also be observed. At small angles

" of attack’ B the dyriamic drag W = R tan B 18 low and accordingly.

the spray on flat-bottom planing surfaces is very thin. For the ,
Sottorf model tests with planing surfaces the calculation gives spray
thicknesses of from about 0.1 to 0.2 millimeter at 5° angle of attack.
If the entire spray were exactly in forward direction and completely
decelerated by the friction at the bottom the frictional force directed
forwerd would be half as great as the spray drag. The spray, however,
very likely hits the water before complete deceleration, end besldes,
part of the spray is directed obliquely sideways as g result of the cur—
vaeture of the forward contour of the pressure area. In consequence
only a portion of half the spray dreg can be recovered by the frictiocm.

On V-bottom boats (fig. 10) and aven more so on planing boate with
greater V or less angle of attack, the relative speed governing the
friction, is inclined obliquely backward. Thus the spray drag ls augmented
by the backward directed frictionel dreg of the thick spray water layer.

Consideration of Gravity Effect

. . Because of the mathematical difficulties involved in comprehending
the effect of gravity, knowledge concerning this condition is meager.

_ The following considerations are given with the aid of the results of
the gravity-free condition. Consider, firet, the two-dimensional flow

‘problem ' (fig. 12). A plate of very (infinlte],y) great width b 1s held

" in the flow. The plate then experiences & pressure p on its lower

‘surfece.’ It was, however, not possible to obtain a satisfactory explana—
tlion of the relations between pressure distribution and plate form. On
the other hend, success (reference 5) in computing the drag of the plate
for any chosen pressure distribution on the premise of infinitely small
inclination of the fluid surface was obtained. The pressure area is di-—
vided into separate pressure lines with the lifting force AR =p b A x.
Each pressure line produces, aside from a local disturbance, a wave ems—
nating from it of height

2AR (1)

Aas
PV2b

The total wave behind the pressure surface consists of the sum of
all these individual waves of the same wave length, however, the differ—
ent origins (of the various pressure lines) must be noted. The height
a of this total waeve determines the wave ensrgy and hence the wavg
drag (gravity drag) of the planing surface:
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g=ferad - (5)

Hence, if the length of the pressure surface (planing surface) ie amall
relative to the length of a wave,6that 1s, if all the individual vwaves ema—
nate from almoat the same place, the height a of the total wave

a= 2R | (6)
b ove

is independent of the - special pressure distribution and the eventual
appearance of a pressure peak, tnat is, independent of the form (of the
profile) of the planing surface. The wave drag also

R2g _ _2nRe 1)
PV:ED PV L

V= % gha2 b =

is indépendent of the profile of the planing surface.

The wave drag is proportional to the acceleration of gravity g;
for gravity—free motion and infinite plate width there is no wave
drag, in accord with the foregoing considerations. How does this drag—
producing effect of gravity or131nate°

.. 1In gravity-free motion the watar 1n front of the pressure surface
rises {(fig. 13); this area is called "impact area.” This rise is di-
minished through the action of gravity, or in other words, - in compari-
son to the gravity-free motion, the acceleration of gravity.imparts a
supplementary, downward velocity vg to the water before the planing
surface. If, Tor example, the pressure area ig short.compared. to the
length of the.impact area, the downward velocity in the area of the
.pressure surface is very approximately constant. This correspends to a
rotation of" the entire flow picture through:an angle of . Bg = -ﬁ. Since

the drag introduced by the gravity is already exactly known, ﬁg ie com~
- puted from the relation (fig. 13)

W R
Pg A PV D

1(The following consideration merely serves to illustrate the proc—
ess and, above all, to estimate the change in gravity .effect on plates
of finite width. That the gravity effect on infinitely eort plates
can be represented by a rotation of the flow picture according to egua—
tion (8) follows from the independence of the gravity effect on the
pressure distribution, The proof can be adduced in similar manner as
in the author's article, reference 2, par. 12).



i

T =

R

NACA TM No. 1139 9

For the sake of clearness the form of the pressure surface had been
chosen so as to produce no spray. But if a flat plate is used, for
example, there is a gravity drag Wg = Bg R to which corresponds the
rotation of the flow pattern through angle Bg and the wave energy, and
in eddition, t'c¢ . vay drag Wg = (B — Bg) R corresponding to the sprey.

The spray drops back in the water in front of the plate, where its
energy ie dissipated as turbulence. Because the theory of the pressure
lines postulated infinitely swall inclination of the fluid surface it
has failed for all plate forms on which sprays originate (and this in—
cludes practically all the utilized plate forms), since the inclination
of the fluid surface at the spray is nearly 180°. After grasp.ing the
relation it was easy to account for the spray on short plates. However,
it is not difficult to apply the pressure line theory to such flow proc--
esses even for finite plate length (cf. appendix).

Finite Plate Width

An estimation will give a picture of the meveral effects for plates
of finite width. First, coneider again the plates of very small length.
Spray and spray drag mey be discounted for the present. It can be de—
termined later for the given plate form when the downwash dus to gravity
and finite plate width is known.

The gravity drag for such a short plate is computed as in the case
of an infinite plate wiath and the induced drag is computed separately
for gravity-free motion, thus

2 2
I. oV2b 1 pVeD

According to these formulas the gravity drag is smaller than the spray
drag, when b < ~ 1/5 L. But then it is also possible to compute for
gravity-free motion the impact area for finite plate width (reference
2, par.lE), and thle calculation shows that the volume and the forward
extent of the impact area diminishes very repidly with decreasing plate
width. From this it can be concluded that the gravity drag introduced
by the impact area is substentially less on plates of finite width than
for plates of infinite width, so that for plates of b < 1/5 1T this ef—
fect of the gravity should be unimportant, Hence for this range of
small plate widths which comprises the technically important processes,
the induced drag comes close to the correct value.

Expressed in other words: while the water is pressed downward be—
hind the plate and laterally upward behind the plate of finite width
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(fig. 6), and gives rise to a wave motion due to the action of gravity,
theee processes behind the shoit plate have no rectroactive effect on
the flow at the plate. The wave drag (if one wants to call it that) is
identical with the induced drag. If the narrow plate is long ite after-
part falls into **- region of upward velocity produced by gravity. The
drag (wave drag) is then, as the tests also indicated, smaller than the
induced drag for gravity-free motion, the gravity then has & drag-
reduqing effect.

An attempt is made to obtain an understanding of the region of
transition from floating to planing by means of a calculation. (Compare
the test data for the speed of maximum water drag of hydroplanes,
Schiffbau, July.1929). A flat planing surface with vertical side walls
at rest has the displacement 1ift Adepl = 1/2'y b 12 B, a surface glid-

ing over gravity-free fluid has the planing 1ift according to equation
(19) (with £ = 0). The two formulas yield identically great 1lift values,
when

I

1= (9)
a<9 bl

. b //

hence, for example:

for —h='°°, when -L =-._:.l:_.
4 L 4

for 2= 1 When —— = ~i-
1 6

for —b—-= ——]-'- when —-—-_-.—.—:!"...
z 3 L 10

It is estimated t. .. the transition in these conditions of plate length
and wave length takes place between the predominaence static 1ift and
the planing attitude.

Comparison with Experiments

For gravity-free motion, the planing force R, 1in otherwise iden—
tical conditions, increases proportionally to v2. The value R/v? is
therefore, at given plate width, dependent only upon the angle of attack
B and length 1 of the pressure surface. Figure 14 shows £ plotted
against 1 for four R/v2 values with plates of 30-centimeter width
according to Sottorf's planing tests (reference 6). The tests were
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made at four speeds; the test points for the same speed are combined
into a curve. The curve computed for gravity--free motion by the short
plate theory 1s also shown.

In the two top figures (and also approximately in the third) the
test series with the high speeds V = 6.8 and 9.5 meters per second
coincide. Since the Froude number and consequently grevity has no in—
fluence, in these tests an exact theory of gravity—free motion should
agree wlth these tests. For the short lemgths, and particularly under
the emall loading, (top fig.), that is, at small P compared to the
other figures, t.= _zst curves are up to 20 percent above the theoretical
curve. Fart of this discrepancy may be attributable to the fact that in
the test the maximum length of the wetted surface, namely, the length in
the center of the planing surface, was obgerved, while the theoretical
curve refers to the mean length. Probably the effect of the friction
on the thin spray iteelf has slightly modified the flow in the area of
the forward edge with respect to the theory. The scattered test points
for small lengths seem to polnt toward this effect.

For greater lengths (1 > ©/2 = 15 cm) and small B (top fig.) the
short plate theory ylelds, as stated, too much 1lift and too small B.
With scme effort this divergence could ale¢ be determined theoretically.

For great 1 and great B, on the other hand, the water streams
rast the long slde edge with laterally directed speed (fig. 15); in
ccmparison to smaell B a wider portion of the fluld is pressed down-
wardt; the angle of attack is then smaller than computed by theory.
(cf. figs. 3 and 4.) The same phencmenon occurs, although not &s con—
gpicuously, in airfoil tests (reference k).

In the tests at low speed V = U4 meters per second the gravity
hag & substantial lift—increasing end drag-decreaging effect, especially
at great lengths. Since in this case the wave length amounts to
L = 10 meters, it closely approaches the length for the transition
from floating to planing given by equation (9).

11t is suspected that a wider water mass entails a greater spray
drag (similarly for plening of a wider plete). In agreement with this
sprays appear to r.-~ from the forward edge of the pressure surface as
well as from the sides (from the tips of fig. 15). The absolute speed,
however, and hence the energy in these sprays is probably small. A de—
tailed discussion of these sprays seems euperfluous, since & definite
separation of spray drag and wave drag at finite angles of inclinstion
of the plate is, moreover, not possible.
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Pressure~Point Theary

This importent zone of transition from floating to planing can be
enalyzed by the pressure point theory. As in the two—dimensional prob—
lem where the pressure surface was replaced by pressure lines, the ac~
tion of a finite planing surface can be represented by a distribution of
presaure points on the fluld surface. Calculation of the accompanying
wave drag has actually been accomplished by Havelock and Hogner, and
Weinblum worked out a number of model problems (reference 7).

However, thle theory still offers some difficulties. First of
all, success was not attained in computing the form of the planing sur-
face for a given pressure distribution; hence, an analysis of the effect
of the form on wave drag and particularly on spray drag should prove
difficult. Furthermore, in the theory the finite pressure distribution
is replaced by the Fourier integral theorem (infinite series of sine
functions). Thie substitution, however, leads in the extreme case of
an infinitely small planing surface, to an infinitely great error (of
course, only logarithmically great); the calculation then gives too
high a drag by an amount

2 2
16 R 1n bV
n P Ve b2 gl2@

Thie error prevents the tie—in with the gravity—free motion and mskes
a clear representation of the gravity effect difficult. Moreover, the
transition from floating to planing does take place on planing surfaces
of small dimensions compared to wave length, and it would have to be
explained how great the error is in this zone. And lastly, allowance
for the pressure peak as it consistently occure at the forward edge,
should result in an increase of the error, and so to an apparent in-—
cregse in wave drag which does not exist at all in reality.

Weinblum!s calculation indicates that the defecte of the thecry,
for small planing surface, ars in the expected direction; but the drag—
reducing gravity effect for long, narrow plates is alsc manifest. It is
anticipated that the pressure point theory will ultimately succeed in
giving a clear representation of the gravity effect for the case of
small B.



B

NACA T™ No. 1139 13

Nonstationary Processes

Inpact at a Step

Illustrative of a nonstationary process is the impact of a step
(two—dimensional problem) for gravity-free motion shown in figure 16
(reference 2, p. 208). C ie the point at which the step first touched
the water. The arrows indicate the speed at several points of the sur—
face. In the shaded area over the surface failrly high horlzontal speeds
prevall. The spray reaches up to D. The impact force can be calcu-
lated; the pressure distribution was not computed.

Impact,of V-Bottom Boat

Figure 17 shows the vertical impact of a V-bottom boat (of infinite
length) on the water (references 2, and 8), as represented by the drop
of a planing boat tossed upward by the waves. The form of the wgter
level and the prespure distribution for several successive phases of
this process are indicated. .

The reaction to the downward acceleration of the water is a pres—
sure -on the planing surface. Since in the subseguent course .the mid~-
area .,of the water has already assumed the speed .of the boat, and .on the
edge new parts of the water are 1nVO1ved, the pressure at the edge .of
the pressure, surface is great, especially if the bottom surface has
1ittle inclination. Since the boat and hence the downward moving water
is decelerated again during the process, negative pressures may even
occur in the medisn part of the beat. The: spray flung off laterally
contains the greater part of the motion energy given off by the body on
the water. Assuming a rigid boat the calculation is comparatively easy
for any form of bottom.

Descriptidn of Photographs

Figures 19, 20, 21, and 23,are phetographic records taken in the
Hydraulice and Marine research labcraxory. Figure 22 is taken from a
report by Sottorf (reference6).

Figure 19: flat, planing glass plate, photographed vertically
from above; width b = 20 centimeters, length of pressure surface
1 35 centimeters, over all length of plate: 60 centimeters, angle
107; plening speed V = 6,5 meters per second.

In these and in the succeeding photographs the camera moved with
the planing surface.




14 NACA TM No. 1139

The spray thrown forward (calculated thickness about 0.8 mm) is re-
tarded by the friction on the glass plate and ultimately stopped by the
relative wind and bent back., Almost all of the spray comes from the
front edge of the presgsure surface, and the spray leaving the lateral
points of the forward edges obliquely backward are plainly visible.

Only a small amount of spray shoots from the side of the plate at the
water surface (fig. 15), end its absolute speed is low, the apparently
high speed (that is, the relative speed) is only due to the fact that
the camera moves with 1t.

The disturbance of the epray at the right-hand front edge of the
plate seen in figures 19 and 20 is attributable to the plate attachment.

Pigure 20: flat glass plate as in figure (19), but with B = 25°%,
taken diagonally from the rear. Because the spray thickness (for equal
proportion of spray drag to total drag increases with the square of the
speed, the spray formaiion is considerable. The contour of the plate
and particularly its nonvisible part were added later. The forward
edge of the pressure surface is covered by the spray; 1t 1s located at
about the same place aeg in figure 19.

Figure 21 V;bottqm glaes plate, 20 centimeter in width, angle of
dead rise: 180° — 2.20° = 140°%; B~ 10°; other particulers as those of

figure 19. Clearly visible is front edge of pressure surface (running
diagonally backward from the keel) and the forward. lateral edge of the
spray under the glass plate (almost crosswise to the spray) the asym—
metry is probably due to an inclination of the water surface following
a wave., The part of the spray forming the forward lateral edge is very
thin and is immediately blown backward by the slipstream on leaving -

the protecting bottom surface, while the part of the spray emerging
farther back from the forward edge of the préssure, surface maintains
ite direction longer because it i1s thicker. -

As a continuation of the forward edge of the pressure surface on
each slide toward the back a bright curved line is visible. Along this
line & scarcely discernible plume emerges from. the free surface which
in figure 22 forms a plainly visible blister. The inclination of this
blister along ite point of origin is fairly great, considerably greater
then the angle of dead rise., Its slight lateral extent points to its
low absclute speed as proved by test. Theoretically it can be readily
proved that such a blister cannot form on flat bottoms,

Figure 22: on this V-bottom (as in fig. 21):the spray forming at~
the forwerd edge of the pressure surface is comparatively flat, while
farther back the steeper plume coming from the free surface forms the
blister.

Flgure 23: V-bottom plate as in figure 21 photographed diagonally
from the rear.
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APPENDIX

CORRELATED MATHEMATICAL RESULTS FOR‘THE ANATYZED LIMITING CASES

NOTATION
R resultant force on the planing surface
| A 1ift
W total drag

f Wg spray drag

Wy induced drag (due to finite planing surface width) for gravity—
free motion

Vig gravity drag (wave drag) for planing surface of infinite width

M moment of planing force about the trailing edge of the planing
; surface

b width of planing surface
(1 1 average length of pressure surface = area of pressure surface

i divided by b

I hig deflection of curved planing surface, measured over the chord of
i length 1 '

{

, B angle of attack; for curved plening surfaces; angle of attack

¥ of the chord of length 1
By "effective" angle of attack = B minus angle of downwash B3 or Bg

Bi angle of downwash due to finite width of planing surface in
gravity-free motion

g
w
&

{ angle of downwash due to gravity for plening surfece of infinite
| width

3; v planing speed

)

f (o] deneity of fluid
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L wave length

x auxilisry quantity; to be teken from figure 18

Plate of Infinite Width; Gravity-Free Motlon

Flat Plate, Finite Angle of Attack

R=x —g— PV2 By b 1 , (10) -
Wg = R sin B, (11)
A = Rcos By (12)

Flat and curved plates with infinitely small inclination:

. . /’ N
R:A:ﬂpVZb&f+—]-‘-ZBw\) (13)

2 /
Ws=%ﬂp\/;2ﬁ$, b1 (1k)

1 (¢.3
M anvzbl\f+hlﬂw) (15)
&= ~n 1 Py = S (16)

2P0VeDY

These equations are exact with P = B, for gravity-free motion and
infinite plate width; it is then W= Wg.

But in given form these equations are equally gpplicable to the
following.

Finite Plate Width; Gravity-Free Motion

For plates with finite span an induced drag occurs 2 (almost in~
dependent of plate form and length):

1Equations (17) to (23) are exact only for elliptic 1lift distribu—
tion over the span of the plate. The differences in other cases can be
computed, but are of doubtful importance for the planing problem. These
equations are also exactly valid only for infinitely small 8. In con—
sequence R was substituted for A (in contrast to airfoil theory).

—
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4 2
e vep2

(17)

W =

This equation does not hold for long plates and at the same time greater
angles of attack.

For infinitely short plates equations (10) to (17) are valid with

By = B- By where py = 4R (18)
t p V22

From equation (18) and (13), (14), (17), for example, it yields

xPV2Db (f+0.5%X18)

R = - (19}
2
1+b'
b - 4f
Wg = R T (20)
b + 21
LR2 .
Wi =R By = = (21)
n P V2p2

For any long flat plate with infinitely small B

A=T1I ,y232p (22)
W b '
Wy Wg .
W= AP =W = 4+ =L (23)
)

w W
e d -2 in respect to plate length are read from figure 9.
W W

Infinitely small inclination, any plate form: for stationary and
nonstationary motion of any shape of planing surface with any variable
shape of pressure surface, the total force R ‘follows the vector
equation

R=2(T-5) (24)
2
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T denotes the total force an the equally moving wing, whose shape and
eventually variable contour is identical with that of the planing sur-
face; S ie the resultant of all suction force applied at the leading

edge of this wing, . - . o

The only difficulty in solving the problem in a few cases (reference
.2, secs, 10, 12, 1k, 15).is the determination of the contour of the pres—
sure area of the planing surface. |

Plate of Infinite Width — Gravity Taken into Consideration

Wave length is given by the formula

L = 2-%—‘12 (25)

The wave height & for any chosen pressure distribution follows from the
relation 1

1 1
S 4 -2
p2 v 52 4 | 21x% \f ! .. 2nx )
Lol A - ax ax ' (26
" K(J) p cos = J +\\j D sin T /( )

x indicates the position of the several pressure lines pdx (fig. 12).
From a the gravity drag (wave drag) (reference 5, p. 466, equation (3))

i8
Vg = % g P a2b (27)

If s pressure peak is chosen on the forward'edge with’é pressure distri-—
bution corresponding to figure 2 the spray drag (reference 2, eguation(18))
follows from the respective sgpray thickness o as

Weg =2PV253Db (28)

A problem still to be solved is the clear representation of the relation—
ship between pressure distribution and plate form for longer plates.
For (infinitely) short plates equations (10) to (17) 2are applicable with

iThis relation originates with Lamb {reference 5, p. 451, equation
(27)) by application of the law of superposition to the infinitely many
pressure lines pdx.

2Equations (10), (11), and (12), should remain exact for finite B,
provided Pg is infinitely small., But then it should be observed
(for instance, in equation (29)) that aside from the planing force R
the reactive force 2V P V 8 b corresponding to the spray, acts on
the fluid. However, this consideration was not explored.
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~ : R o
Pw = B — Bg where Bg = B'ﬁ"ﬁ' (29)

The equations for wave height and gravity drag teke the 51mple form of
equations (6) and (7), respectively. o

DISCUSSION

Dr. F. Weinig: The speaker has shown that for infinitely small
engles of attack and gravity-free motion the flow on the lower surface
of a planing surface is exactly comparable with that at the lower surface
of an airfoil. It may be shown that this comparison remains very approxi—
mately valid for greater angles of attaclk also. The dependability of
this comparison can be proved on the example of the flat planing surface
end the submerged flat plate. Figure 1 shows the pressure distribution
at the lower surface of the flat airfoil and at the flat planing surface
for the area behind the stegnation point. The agreement is seen - to be
close up to fairly great angles of attack. This comparison nseds to be
supplemented for the area before the stagnation point. Since the pressure
on the planing surface in this area drops asymptotically to zero - in
contradistinction to the wing — the comparison requires a special consld-
eration — the introduction of an effective length.

From the satisfactory agreement for the area behind the stagnation
peint for the flat plate we may infer a good agreement for the other
plate forms also. In that event the pressure distribution for a planing
surface of any profile and any setting could be calculated. The result
for a slight ly curved profile of the third order 1is given here.

By profile is meant the form of the planing surface between stagna—
tion point and trailing edge, meking the stagnation point the "leading
edge" of the profile. The leading edge of the thus defined profile and
trailing edge ig to have the ebscissa x = — 1 and x = + 1; the x-axis
is to be coincident with the profile chord. The profile is to follow
the equation

¥ =y - 2
whereby (Birmbaum, Z.f.a.M.M., 192k, p. 277)




20 NACA TM No. 1139

The flow past the profile -is smooth.when set at
Va
3

with respect to the horizontal. The velocity distridbution at the pro~
file is

Vo =

L

L -1 —vlsin A+ vposin 2 A

&

with A = arc cos x. Hence in this case the leading edge (A = =)

w N »
where -‘70—- = 1, is no correct stagnation point. In general the profile
-]
must be set at a greater angle., Let © = a — V, be the setting with
respect to the direction V.

On the pressure side of the profile {cf. F. Weinig, W.R.H. 1931,
_p. 115):

5 [ 1
¥ =cos B!l - —]'———E-t<~nal
L L 1+ ¢ i
That is,'.the stagnation point lies in ¢ = — cos 2 B. In our compari—
son t=--cos 2 8 1is to coincide with x =-~1 and ¢= + 1 with

x-= + 1. Hence
t = 8in2 © + cos2 B x

Furthermore the velocities at the tralling edge shall be equal. In
first epproximation

/ .
wo _ 1~ l-x tan §
Yo . 1 4+ 8in2 &

T+ X

l1- 8in2

hence
wo [ o ATE
—_— ’.I-VI sink+V2$in2k|,1~— /3‘—-—35-—-—-+tan5 _JI
Yo R / 1+ 8in2 8 -
/ —_— T~ + X

/ 1 -8in2 &
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must therefore be valid for the planing surface profile. The pressure
distribution p, since all +v1 shall be small is reproduced by

a lg

=1—[l—2vlsinx+2vgsin2x][l— l-x , ta.nﬁ}
- 1+ sin2 d

1— 8in2 3

As found by integration the 1lift coefficiernt in firset epproximation is

_ . Y b1 vi
ga-nsm<6+ 2>< 1—§<6+ 5 ))

The formula for £ still gives satisfactory results for a part be-
fore the stegnation point when vutting A = n for this part and using the

formula only up to where P .o Subsequently this part is then vis—
Q

uglized to be ~ three times enlarged. Observe also the water surface
behind the planing surface (fig. 2). By means of the pressure point
theory a wave pattern behind the planing surface can be secured for the
two—-dimensional flow. Now, while agreement Is to be expected for small
Freude numbers, Barillon has reported that such agreement occurs only
directly behind the planing surface. Only higher speeds are considered.
This results in a flow process known in hydraulics as backwash (cf.
Barillon, Hydrom. Probl. d. Schiffe, p. 139).

The backwash behind a planing surface, the backwash behind a sluice
discharge and the smacking together of the water behind & cavitation
zone (fig. 3) have great similarity. For the position of the backwash
the form of the flow obstacle is obviocusly of little importance. The
controlling factor, aside from the thickness b of the obstacle,
evidently is the ratio R/2  of the gpeed at the trailing edge to the

W
undisturbed speed at some distance:. R/2 = 28X, The speed wyax

at the trailing edge of a planing surface is 2 little higher than that
at the surface of the water near the leading edge W,. Let 1! be the
wetted length, o the angle of attack. The trailing edge then lies by

h = 1! sin o deeper than the leading edge. With H = »%g w2,, then

¥max = //EQf?ETFTB‘

wvhence
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[V
e

1! gin o
H

R=1+

With. b as the thickness of the flow obstacle the length of the cavita—
tion zone was found (cf. Weinig, Hydrom. Probl. d. Sch. p. 29%, or W.R.E

1932, p. 255) at
2

b R-1

For the analogy of the plening surface b must be put = 21! sin a.
Then

L = —_—
2 1' 8in o 1! sin o

or
L
)if

=1L

The position of the backwash on the planing surface is thersfore
independent of the angle of attack as long as the flow can be regarded
as two—dimensional TFor finite width B of planing surface a relation-—
ship with aspect ratio Ll 8ina o a4ditive. Wave trains leave from

B
both ends of the trailing edge which approach each other more and more
(cf. Sottorf, Experiments with Planing Surfaces, Part IV, appears shortly
in W.R.H.). When these waves meet the water sprays high in the air, re—
gembling a fountain (roach). The analogy of this fountain is, the back—
wagh., Xor the location of this roach

—EL=;f ( i! sin a
H . B /

must be valid. By the quantity B is understood, as the interpretation
(figure 5) (0) of Sottorf's tests manifeste,

L =1' 4+ a

where a 1s the distance of this fountain from the trailing edge of the
planing surface.

No difference is made in the derivations between 2 1' sin o and B.
Therefore, if the premises are admissible, it should

L<21' sincf) L( B
2

H B H 1Y sin o
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vd
The interpretation of the teste indicates (fig. 5, o) that this even
atill holds true to some extent.

In Sottorf's tests the values of «, 1! and a were determined. The
teeste were made at we = 6 meters per second espeed and with six different
planing surface 5 '.:hs B = 0.15 + 0.6 meter. The loading was 18
kilograms.

Dr. G. Weinblum: Naturally other posgibilities of identification
in earlier reports fell victims to the mathematically difficult explana—
tion of the gravity effect... Professor Wagner contrived to escape the
afore-mentioned difficulties and has presented toc us the resulte of a
planing theory with which ~ in the vernacular of the spesker — something
can be done.

As concerns the pressure point theory a definite advence has been
achieved — the inclusion of the vlaning drag for prescribed tottom forms.

The intrcduction of the spray councept is opportune and well founded
in principle; this portion of the fluid motion could naturally be also
regarded as a part of the wave process as the nressure point theory does;
but there would not be much gained by it, because at deflection of the
spray Jet the pattern of an infinitely small wave inclination which
hydrodynamics uses as raeis of its considerations, forms no practical
approximation.

As volced by the chairman, the utilization of the eirfoil theory is
an important advance of the planing problem. Horn was probably the first
to point out such an analogy of the processes in his ship theory. In the
past the use of the term induced drag was regarded as fictitious, the
consideration of wave drag was preferred but Wagner's theory Justifies
Bornts concepticn.

H. Wagner's Reply: '"Concerning the remarks by Dr. Weinig on back—
wash, etc., I am t....1le to reply within this brief periocd. I was grati-
Tied to hear that Dr. Weinig hae already concerned himself with my previ-—
ously published report and is able to indicate new developments. I have
limited myself in this airfoil comparison to the case for which I could
show exact agreement; this is the case of so small angles cf attack that
in the principal area the force on upper and lower surface is the same.
Dr. Weinig suggested an improvement of the comparison (for the case of
stationary motion) by referring it on the wing solely to the lower sur—
face and I would like to concur in his view that by this means a closer
agreement for greater angles of attack can be achisved.

I wish to thank Dr. Weinblum for his friendly exposition. I fully
agree with him. As to his remark sbout Dr. Horn I would like to point
out that Dr. Horn, at least as regards the resistance, has alluded
to a comparison with the airfoil. But he did not carry through this
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comparison because in the absence of the knowledge of the spray drag an
accurate comparison was impossible,"

Translation by J. Vanler,
National Advisory Committee
for Aeronautics,
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Figure 1.— Surface of fluid and pressure distribution for
flat plates of infinite width in gravity—free motion.
For plates of finite width angle B would be replaced
by B, according to equation (18); for short plates
of infinite width under gravity effect angle B 1is
replaced by B, according to equation (29).
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Flgure 2.- Pressure dis—
tribution p over the
plate and flow In the
area of the spray root.
The streamlines shown
are those for moving
plate and static fluid
at infinlty.

Pressure on bottom side

Suction pomt

A,
.\\\\Q}\\\\‘"q

--------- ?
/Frrm/pa/ ared

-

( gf,lﬂ‘ 9 a d) /:

Figure 3.— Flat airfoil of infinite span and infinitely
small angle of attack B; suction point.
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Pressure on bottom side

Figure 4.— Flat planing surface of infinite width with
’ infinitely small angle B.

A--2

H-1a%8 4 ® iii%
\R

Aty
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Figure 5.— Surface of fluld and rorces on several circular
curved planing surfaces of infinite width; the forcee
are comparatively to scale.
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Figure 6.— Prandtl's airfoil theory; the wing of finite span
is in comparison to the wing of infinite span — in a
downwardly directed curved flow.

, .

Figure T7.— Comparison of forces at a wing of finlte and
infinite span.

Figure 8.— The behavior of a flat
airfoil in curved flow (top
picture) is identical with
that of a cambered airfoil in
level flow (bottom picture).
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Figure 9.— Contribution of induced drag Wi and apray resis—
tance Wy to the total drag W on flat plates of different
aspect ratio I/b The theory of finlte plate length and
reliable alrfoll tests include only plate lengths of

0% 1<h0. Accordingly the curve beyond 1 /b 1l was
approximately lengthened up to the theoretically accept—
able value 0.5 for plates of infinite length (cf. refer—

ence 2, p. 205). Section A-8

4

Fressure distribution
\Q§§8g§§L Lﬁbﬂq,4'5

W
”\{Qﬁhmfe@maf
L pressure surfoce

Pressure surfac
' >V
/ / / Vabs
rpl
/ /|
Spray

111

Figure 10.— Processes during pianing of V-bottom boat —
Veel = V 1is the speed of the spray relative to the

planing boat; r = Vel 18 the absolute speed

abs

of the spray.
yrises

____————’/_-/\
/—\

/_\
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Figure 11.— The speed rises
in direction of the speed.
In consequence of which
the friction has no sub—
stantially modified
effect ~ no form drag.
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o

Figure 12.— Division of a pressure surfaece (two—dimensional
problem) in pressure lines.

Free from gravity

Witk gravity

—_— Accumulation

Vv

Figure 13.— The gravity effects a sinking of the
impact area and as a result thereof a rotation
of‘ the flow picture a.nd the introduction of a

"gravity resistauce.
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' Rf 2
/ogw——o V= 3,5'|m/s¢c \: = /V ,‘

ﬁLx—--szg . \“F:?;ti‘i\
V= - o

5’+—-—+V:6 -

0 o---® Y= ;7- l

0 0 30 0 60 70 80cm

Figure 1k.— Flat plates of 30 cm is width compared by theory
and test; the four plots correspond to the load groups I
to IV of.-Sottorf'es tests. The theoretical values were
computed by equation (10) with B according to
equation (18). Sottorf's test data were reduced to
forces at right angles to the plate.

f3 great
7
Figure 15.— The tests indicate

~ ~ that at greater B, hence
also at greater depths of
immersion, a wider portion
of the fluid 1s involved.



NACA TM No. 1139 35

l e G=11tm

several points of the surface.
’ g

Figure 17.— Impact of a long
V-bottom boat of 2 m total
beam, 1100 Kg. per m length
in welght with an initial
rate of impact of 5 m/sec.
The figures are the impact
forces 1n tons per meter of
length.

Figure 16.— Setting on a slip, the arrows indicate the speed for







NACA TM No. 1139 37
! |
R (24
x R [\\\

- e

] I

| 0 0° 2° 3 «w0°

Figure 18.— Diagram for predfcting the mathematical quantity =x.
For plates of finite width and for gravity-affected motion B
must be visuallzed replaced by B..
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Figure 22
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Flat planing surface Submerged

Figure 2k.— Pressure distribution at lower surface of the
flat airfoll and at the lower surface of a flat planing
surface for the area behind the stagnation point.

“ —)\/\/\

Figure 25.— Surface of water behind the planing surface.

(a) at formation of waves
(b) at formation of backwash
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n) Cavitation blister
P=Pp<Pp

Figure 26.— Flow past a submerged obstacle with cavitation.

.
v

[
¢ Convergent wave crests,
starting from fraifing-
edge of planing surface,
UﬂDﬂ canvergencz

" of spray.

Figure 27.— Flow behind a planing surface of infinite width.
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Figure 28.— Wave.
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